Les séries entières occupent une place à part dans le monde infini des séries mathématiques. D’une part, elles possèdent un critère général de convergence et d’autre part, elles permettent de représenter simplement les fonctions usuelles. Un outil à la fois simple à utiliser et incroyablement efficace.
LA NOTION DE SÉRIE
Une suite infinie de nombres réels ou complexes est définie par une application qui à chaque élément de l’ensemble des entiers naturels associe un élément de l’ensemble des réels ou des complexes. On la note en général (uj. Ainsi, à 1 on associe uv à 2 u2 et ainsi de suite, jusqu’à n auquel on associe un. un est alors appelé le terme général de la suite et n est l’indice ou le rang de un. Une fois défini le concept de suite, on peut s’intéresser à la somme de ses termes. Étudier la suite des sommes partielles (dont le terme général est alors SJ s’appelle étudier la série de terme général un. On dira alors la série converge et a pour somme S si la suite converge et a pour limite S. Sinon, on dit qu’elle diverge. Il existe naturelle¬ ment un nombre infini de types de séries, plus ou moins pertinentes. Certaines ont été étudiées de manière systéma¬ tique, car très utiles, comme les séries trigonométriques, les séries de Fourier ou les séries de Dirichlet. Et bien sûr, les séries entières.
DES SÉRIES ET DES ENTIERS
Une série entière à une variable complexe est de la forme où les coefficients a et la variable z sont complexes. Elle est dite « entière » car elle ne fait intervenir que des puissances entières de la variable. Ces séries sont pertinentes en mathématiques pour la représentation des fonctions usuelles et ont des applications fondamentales dans le calcul numérique approché, la résolution d’équations différentielles ou aux dérivées partielles. Par exemple, on souhaite calculer la valeur approchée de sin1 à l’aide d’un logiciel qui utilise des opérations élémentaires (addition, multiplication, etc.) sur des nombres décimaux en nombre fini. La méthode la plus classique pour calculer cette valeur approchée consiste à employer une représentation de la fonction demandée sous forme de la somme d’une série convergente. Utiliser une série entière est alors particulièrement efficace car ses sommes partielles sont des polynômes, dont les valeurs se calculent aisément à l’aide d’un logiciel.
LE RAYON DE CONVERGENCE
L’un des outils fondamentaux de la théorie des séries entières est le rayon de convergence. En effet, lorsque l’on étudie des séries, la question centrale est de savoir si elle est conver¬ gente (et éventuellement quelle est sa somme) ou divergente. Dans le cas général des séries, on ne possède pas de critères simples de convergence. La force des séries entières est qu’il existe un critère de convergence, mis en évidence notam¬ ment par le mathématicien Niels Abel. Ce critère affirme qu’il existe un nombre réel R positif (qui peut prendre éventuelle¬ ment la valeur 0) tel que si le module de z (c’est-à-dire sa distance à zéro dans le plan complexe, équivalent de la valeur absolue pour les réels) est strictement inférieur à R alors la série entière converge. Dans le cas contraire, pour des modules supérieurs à R, elle diverge. On appelle alors ce réel R le rayon de convergence de la série entière. Le disque de centre 0 et de rayon R est appelé disque ouvert de conver¬ gence de la série entière.
CALCUL DU RAYON DE CONVERGENCE
Si le rayon de convergence fournit un critère théorique de convergence ou de divergence d’une série entière, il n’est pas toujours aisé de le calculer en pratique. Il existe cependant de nombreuses méthodes afin de le déterminer. On peut, dans certains cas, utiliser directement la définition du rayon de convergence afin de l’expliciter. Si cela n’est pas possible, on peut utiliser la règle de Cauchy (étude de la limite des racines n-ièmes des modules des coefficients an) ou bien la règle de d’Alembert (étude de la limite des modules des quotients de deux coefficients successifs). Il est également possible d’utiliser certains théorèmes, comme le théorème de comparaison de séries entières, celui du rayon de conver¬ gence d’une somme ou d’un produit (énoncé par Cauchy) ou encore de sa dérivée. Enfin, il est parfois nécessaire d’étudier ce qui se passe sur le bord du disque de convergence (lorsque le module de zest égal à R), où le comportement de la série est difficilement prévisible.
FONCTION DÉVELOPPABLE EN SÉRIE ENTIÈRE
On dit qu’une fonction d’une variable complexe est dévelop¬ pable en série entière au voisinage d’un point s’il existe une série entière de rayon de convergence R strictement positif telle que la fonction soit égale à la limite de cette série entière. Une fonction développable en série entière est infiniment dérivable, l’inverse n’étant pas toujours vrai. Les fonctions usuelles (exponentielle, logarithme, fonctions trigonomé- triques, etc.) sont toutes développables en série entière. Cette propriété est très utile, par exemple dans des calculs d’intégrales. Enfin, on dit qu’une fonction est analytique sur un ensemble U si elle est développable en série entière en tout point de cet ensemble. Si, dans l’ensemble des réels, toute fonction infiniment dérivable n’est pas nécessairement analytique, cette propriété est vraie en analyse complexe. Une fonction holomorphe (dérivable au sens complexe) est analytique, ce qui donne une place de choix aux séries entières en analyse complexe.
EN RÉSUMÉ
Les séries entières, qui tirent leur nom du fait que seules des puissances entières de la variable entrent en jeu, occupent une place à part dans l’univers infini des séries. La question centrale de l’étude des séries étant leur convergence, l’existence d’un rayon de convergence (calculable par de nombreuses méthodes) pour les séries entières en fait un outil très précieux. En outre, les séries entières permettent de représenter « simplement » les fonctions usuelles, ce qui a ouvert le champ très fertile de l’étude des fonctions analytiques.